Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355796

RESUMO

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Assuntos
Proteínas de Bactérias , Resposta ao Choque Frio , Fatores de Terminação de Peptídeos , Biossíntese de Proteínas , Psychrobacter , Proteínas Ribossômicas , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestrutura , Microscopia Crioeletrônica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/ultraestrutura
4.
Nat Methods ; 17(12): 1183-1190, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077967

RESUMO

CRISPR-Cas technologies have enabled programmable gene editing in eukaryotes and prokaryotes. However, the leading Cas9 and Cas12a enzymes are limited in their ability to make large deletions. Here, we used the processive nuclease Cas3, together with a minimal Type I-C Cascade-based system for targeted genome engineering in bacteria. DNA cleavage guided by a single CRISPR RNA generated large deletions (7-424 kilobases) in Pseudomonas aeruginosa with near-100% efficiency, while Cas9 yielded small deletions and point mutations. Cas3 generated bidirectional deletions originating from the programmed site, which was exploited to reduce the P. aeruginosa genome by 837 kb (13.5%). Large deletion boundaries were efficiently specified by a homology-directed repair template during editing with Cascade-Cas3, but not Cas9. A transferable 'all-in-one' vector was functional in Escherichia coli, Pseudomonas syringae and Klebsiella pneumoniae, and endogenous CRISPR-Cas use was enhanced with an 'anti-anti-CRISPR' strategy. P. aeruginosa Type I-C Cascade-Cas3 (PaeCas3c) facilitates rapid strain manipulation with applications in synthetic biology, genome minimization and the removal of large genomic regions.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Edição de Genes/métodos , Engenharia Genética/métodos , Sequência de Bases/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Pseudomonas aeruginosa/genética , Pseudomonas syringae/genética , Deleção de Sequência/genética
5.
Curr Opin Microbiol ; 57: 22-30, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599531

RESUMO

Directed evolution allows the effective engineering of proteins, biosynthetic pathways, and cellular functions. Traditional plasmid-based methods generally subject one or occasionally multiple genes-of-interest to mutagenesis, require time-consuming manual interventions, and the genes that are subjected to mutagenesis are outside of their native genomic context. Other methods mutagenize the whole genome unselectively which may distort the outcome. Recent recombineering- and CRISPR-based technologies radically change this field by allowing exceedingly high mutation rates at multiple, predefined loci in their native genomic context. In this review, we focus on recent technologies that potentially allow accelerated tunable mutagenesis at multiple genomic loci in the native genomic context of these target sequences. These technologies will be compared by four main criteria, including the scale of mutagenesis, portability to multiple microbial species, off-target mutagenesis, and cost-effectiveness. Finally, we discuss how these technical advances open new avenues in basic research and biotechnology.


Assuntos
Bactérias/genética , Cromossomos Bacterianos/genética , Engenharia Genética/métodos , Mutagênese , Sistemas CRISPR-Cas , Plasmídeos/genética
6.
Nat Methods ; 17(5): 471-479, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203383

RESUMO

Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes, a diverse family of prokaryotic adaptive immune systems, have emerged as a biotechnological tool and therapeutic. The discovery of protein inhibitors of CRISPR-Cas systems, called anti-CRISPR (Acr) proteins, enables the development of more controllable and precise CRISPR-Cas tools. Here we discuss applications of Acr proteins for post-translational control of CRISPR-Cas systems in prokaryotic and mammalian cells, organisms and ecosystems.


Assuntos
Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas , Inibidores Enzimáticos/farmacologia , Edição de Genes , Regulação da Expressão Gênica , Animais , Humanos , Engenharia de Proteínas
7.
Nat Commun ; 10(1): 5731, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844052

RESUMO

Antimicrobial peptides (AMPs) are key effectors of the innate immune system and promising therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to human host-defense peptides remains limited. Here, we systematically assess the resistance determinants of Escherichia coli against 15 different AMPs using chemical-genetics and compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains. Although generalizations about AMP resistance are common in the literature, we find that AMPs with different physicochemical properties and cellular targets vary considerably in their resistance determinants. As a consequence, cross-resistance is prevalent only between AMPs with similar modes of action. Finally, our screen reveals several genes that shape susceptibility to membrane- and intracellular-targeting AMPs in an antagonistic manner. We anticipate that chemical-genetic approaches could inform future efforts to minimize cross-resistance between therapeutic and human host AMPs.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/imunologia , Evolução Molecular Direcionada , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Genes Bacterianos/genética , Genes Bacterianos/imunologia , Testes de Sensibilidade Microbiana , Mutação
8.
Nat Commun ; 10(1): 4538, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586049

RESUMO

Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Evolução Molecular Direcionada , Desenvolvimento de Medicamentos/métodos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genoma Bacteriano/genética , Humanos , Metagenômica , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Mutação Puntual , Microbiologia do Solo
9.
Mol Biol Evol ; 36(8): 1601-1611, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058961

RESUMO

Multidrug-resistant clinical isolates are common in certain pathogens, but rare in others. This pattern may be due to the fact that mutations shaping resistance have species-specific effects. To investigate this issue, we transferred a range of resistance-conferring mutations and a full resistance gene into Escherichia coli and closely related bacteria. We found that resistance mutations in one bacterial species frequently provide no resistance, in fact even yielding drug hypersensitivity in close relatives. In depth analysis of a key gene involved in aminoglycoside resistance (trkH) indicated that preexisting mutations in other genes-intergenic epistasis-underlie such extreme differences in mutational effects between species. Finally, reconstruction of adaptive landscapes under multiple antibiotic stresses revealed that mutations frequently provide multidrug resistance or elevated drug susceptibility (i.e., collateral sensitivity) only with certain combinations of other resistance mutations. We conclude that resistance and collateral sensitivity are contingent upon the genetic makeup of the bacterial population, and such contingency could shape the long-term fate of resistant bacteria. These results underlie the importance of species-specific treatment strategies.


Assuntos
Evolução Biológica , Farmacorresistência Bacteriana/genética , Transportadores de Cassetes de Ligação de ATP/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Aptidão Genética , Mutação , Canais de Potássio/genética , Salmonella enterica , Especificidade da Espécie
10.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925180

RESUMO

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Assuntos
Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
11.
Proc Natl Acad Sci U S A ; 115(25): E5726-E5735, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871954

RESUMO

Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Loci Gênicos/genética , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Evolução Molecular , Genômica/métodos , Mutação/genética , Taxa de Mutação , Trimetoprima/farmacologia
12.
Nat Microbiol ; 3(6): 718-731, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795541

RESUMO

Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/genética , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Mutação , Bibliotecas de Moléculas Pequenas/farmacologia
14.
PLoS Biol ; 15(5): e2000644, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28486496

RESUMO

Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.


Assuntos
Adaptação Biológica , Evolução Biológica , Farmacorresistência Fúngica/genética , Genes Fúngicos , Fenótipo , Mutação , Saccharomyces cerevisiae
15.
ACS Synth Biol ; 6(8): 1471-1483, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28426191

RESUMO

The ideal bacterial chassis provides a simplified, stable and predictable host environment for synthetic biological circuits. Mutability and evolution can, however, compromise stability, leading to deterioration of artificial genetic constructs. By eliminating certain sources of instability, these undesired genetic changes can be mitigated. Specifically, deletion of prophages and insertion sequences, nonessential constituents of bacterial genomes, has been shown to be beneficial in cellular and genetic stabilization. Here, we sought to establish a rapid methodology to improve the stability of microbial hosts. The novel workflow involves genome shuffling between a mobile genetic element-free strain and the target cell, and subsequent rounds of CRISPR/Cas-assisted MAGE on multiplex targets. The power and speed of the procedure was demonstrated on E. coli BL21(DE3), a host routinely used for plasmid-based heterologous protein expression. All 9 prophages and 50 insertion elements were efficiently deleted or inactivated. Together with additional targeted manipulations (e.g., inactivation of error-prone DNA-polymerases), the changes resulted in an improved bacterial host with a hybrid (harboring segments of K-12 DNA), 9%-downsized and clean genome. The combined capacity of phage-mediated generalized transduction and CRISPR/Cas-selected MAGE offers a way for rapid, large scale editing of bacterial genomes.


Assuntos
Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Melhoramento Genético/métodos , Genoma Bacteriano/genética , Instabilidade Genômica/genética , Sequências Repetitivas Dispersas/genética , Mutagênese Sítio-Dirigida/métodos , Evolução Molecular Direcionada/métodos
16.
Curr Opin Microbiol ; 33: 113-122, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27472027

RESUMO

The release of the first complete microbial genome sequences at the end of the past century opened the way for functional genomics and systems-biology to uncover the genetic basis of various phenotypes. The surge of available sequence data facilitated the development of novel genome editing techniques for system-level analytical studies. Recombineering allowed unprecedented throughput and efficiency in microbial genome editing and the recent discovery and widespread use of RNA-guided endonucleases offered several further perspectives: (i) previously recalcitrant species became editable, (ii) the efficiency of recombineering could be elevated, and as a result (iii) diverse genomic libraries could be generated more effectively. Supporting recombineering by RNA-guided endonucleases has led to success stories in metabolic engineering, but their use for system-level analysis is mostly unexplored. For the full exploitation of opportunities that are offered by the genome editing proficiency, future development of large scale analytical procedures is also vitally needed.


Assuntos
Bactérias/genética , Sistemas CRISPR-Cas/genética , Fungos/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Genoma Bacteriano/genética , Genoma Fúngico/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/metabolismo , Biblioteca Genômica , RNA Guia de Cinetoplastídeos/genética
17.
Nat Commun ; 7: 11607, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197754

RESUMO

A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Escherichia coli/genética , Redes e Vias Metabólicas/genética , Modelos Genéticos , Escherichia coli/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(9): 2502-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884157

RESUMO

Currently available tools for multiplex bacterial genome engineering are optimized for a few laboratory model strains, demand extensive prior modification of the host strain, and lead to the accumulation of numerous off-target modifications. Building on prior development of multiplex automated genome engineering (MAGE), our work addresses these problems in a single framework. Using a dominant-negative mutant protein of the methyl-directed mismatch repair (MMR) system, we achieved a transient suppression of DNA repair in Escherichia coli, which is necessary for efficient oligonucleotide integration. By integrating all necessary components into a broad-host vector, we developed a new workflow we term pORTMAGE. It allows efficient modification of multiple loci, without any observable off-target mutagenesis and prior modification of the host genome. Because of the conserved nature of the bacterial MMR system, pORTMAGE simultaneously allows genome editing and mutant library generation in other biotechnologically and clinically relevant bacterial species. Finally, we applied pORTMAGE to study a set of antibiotic resistance-conferring mutations in Salmonella enterica and E. coli. Despite over 100 million y of divergence between the two species, mutational effects remained generally conserved. In sum, a single transformation of a pORTMAGE plasmid allows bacterial species of interest to become an efficient host for genome engineering. These advances pave the way toward biotechnological and therapeutic applications. Finally, pORTMAGE allows systematic comparison of mutational effects and epistasis across a wide range of bacterial species.


Assuntos
Bactérias/classificação , Engenharia Genética , Genoma Bacteriano , Mutação , Bactérias/genética
19.
Proc Natl Acad Sci U S A ; 111(32): 11762-7, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071190

RESUMO

A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.


Assuntos
Evolução Biológica , Redes e Vias Metabólicas , Adaptação Fisiológica/genética , Simulação por Computador , Enzimas/genética , Enzimas/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Modelos Biológicos , Fenótipo
20.
Mol Biol Evol ; 31(10): 2793-804, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063442

RESUMO

Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here, we demonstrate that inactivation of a central transcriptional regulator of iron homeostasis (Fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated that the set of genes regulated by Fur changes substantially in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, overexpression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, whereas inhibition of the SOS response-mediated mutagenesis had only a minor effect. Finally, we provide evidence that a cell permeable iron chelator inhibits the evolution of resistance. In sum, our work revealed the central role of iron metabolism in the de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli K12/genética , Ferro/metabolismo , Proteínas Repressoras/genética , Escherichia coli K12/efeitos dos fármacos , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase , Mutagênese , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...